The D ffodil Centre

Where is cervical cancer prevention heading? An international perspective

Associate Professor Megan Smith Co-lead, Cervical Cancer & HPV Stream

New Zealand National Lab Scientists' Training Day 23rd August 2022

THE UNIVERSITY OF SYDNEY

World-first – eliminating a cancer

This global strategy to eliminate cervical cancer proposes:

- a vision of a world where cervical cancer is eliminated as a public health problem;
- a threshold of 4 per 100 000 women-years for elimination as a public health problem;
- the following 90-70-90 targets that must be met by 2030 for countries to be on the path towards cervical cancer elimination:

National Strategic Plan to Reach the Interim Targets of Cervical Cancer Elimination in Sri Lanka 2021 – 2030

Countryspecific strategies and action plans

Action Plan for the ELIMINATION OF CERVICAL CANCER IN CANADA

The D⁺ffodil Centre

Cervical screening drives elimination timing

Things we know – and the horizon

- Cervical screening works and drives elimination timing
 - How do we make it more accessible?

Who misses out on screening?

International studies

Making screening more accessible

- Self-collection
- Accessible clinics
 - Outreach, mobile
 - People with a disability
 - Point-of-care tests
 - Community-controlled services
 - Peer-led services LGBTQI+
- Non-medical providers

The D⁵ffodil Centre

Things we know – and the horizon

- Cervical screening works and drives
 elimination timing
 - How do we make it more accessible?
- HPV testing is risk-based screening
 - How can we make it better?

HPV mRNA vs DNA

- Clinician cervical samples: mRNA equivalent sensitivity, slightly higher specificity
- Self-collected vaginal samples: lower sensitivity

Relative sensitivity (left) and specificity (right) to detect CIN2+ of hrHPV mRNA testing versus hrHPV DNA on self-collected vaginal specimens

Relative sensitivity (left) and specificity (right) to detect CIN2+ of hrHPV mRNA testing versus hrHPV DNA on clinician-collected cervical specimens

			Relative		Relative	
Study	Comparator		sensitivity (95% CI)		specificity (95% C	
		1		1		
APTIMA		1		1		
Wu, 2010	HC2		1.13 (0.98, 1.39)	F	1.08 (1.06, 1.11)	
Monsonego, 2011	HC2		0.95 (0.87, 1.02)		1.06 (1.05, 1.08)	
Ratnam, 2011	HC2		1.00 (0.65, 1.55)	•	1.04 (1.01, 1.07)	
Cuzick, 2013	HC2	+	1.00 (0.89, 1.12)		1.06 (1.04, 1.07)	
Heideman, 2013	GP5/6+EIA	+	0.96 (0.88, 1.05)		1.01 (0.99, 1.04)	
Nieves, 2013	HC2	_ + _	0.99 (0.79, 1.25)		1.01 (1.00, 1.03)	
Iftner, 2015	HC2	-	0.94 (0.86, 1.03)		1.01 (1.01, 1.02)	
Cook, 2017	HC2	+	0.96 (0.87, 1.06)		1.01 (1.00, 1.03)	
Summary		0	0.98 (0.95, 1.01)		1.03 (1.02, 1.04)	
OncoTect						
Coquillard, 2011	HC2	+	0.98 (0.88, 1.11)	2	• 2.33 (1.90, 2.86)	
Optimygene E6/E7 mRNA						
Wang, 2019	HPV DNA chip	-8-	0.91 (0.82, 1.10)		1.17 (1.02, 1.34)	
Pretect HPV-Proofer		4				
Hovland, 2010	GP5/6+EIA -		0.81 (0.67, 1.03)	÷	1.13 (1.07, 1.19)	
Cuzick, 2013	HC2 -	+	0.74 (0.58, 0.88)		1.12 (1.10, 1.13)	
Summary		\diamond	0.76 (0.65, 0.89)	1	1.12 (1.10, 1.13)	
	.5	.75 1 1.33	2	5 .75 1 1.33	2	
	Re	elative Sensitivity		Relative Specificity	,	

The D⁺ffodil Centre

Arbyn *et al*, Lancet Oncology 2022

HPV mRNA vs DNA

- Prevalent vs incident HPV detection/ screening round
 - screening round vs detection in an individual
 - ~half of those persistently positive on a pooled test had genotype switch

Cumulative incident risk for high-grade cervical disease according to HPV status at the first and subsequent test

Bonde *et al*, J Low Genit Tract Dis. 2021. Human Papillomavirus Same Genotype Persistence and Risk: A Systematic Review.

- HPV mRNA vs DNA
- Prevalent vis incident HPV detection/ screening round

Triage

LBC

- HPV16/18+: ~30% referrals (decreasing; <15% 25-29y)
- Non-16/18 without ASC-H+: ~56% referrals (>70% 25-29y)

Smith *et al*, BMJ 2022. National experience in the first two years of primary HPV cervical screening in an HPV vaccinated population in Australia: observational study

HPV mRNA vs DNA

 Prevalent vis incident HPV detection/ screening round

Triage

LBC

- HPV16/18+: ~30% referrals (decreasing; <15% 25-29y)</p>
- Non-16/18 without ASC-H+: ~56% referrals (>70% 25-29y)
- Low risk, even with 12m persistence
 - Updated guidelines in Au; incorporated in NZ draft

Smith *et al*, BMJ 2022. National experience in the first two years of primary HPV cervical screening in an HPV vaccinated population in Australia: observational study

HPV mRNA vs DNA

 Prevalent vis incident HPV detection/ screening round

Triage

LBC

Extended genotyping

Adapted from: Bonde *et al*, Journal of Lower Genital Tract Disease. 2021;25(1):27-37 and Demarco *et al*, E Clinical Medicine 2020;22:100293.

HPV type	Rationale	7-year CIN3+ risk	Suggested management
16	uniquely carcinogenic and should be individually distinguished	22%	Colposcopy
18,45	Risk of SCC and adenocarcinoma	>5%	Closely monitor
31,33		>5%	Closely monitor
52,58	Higher risk than remaining types	>5%	Repeat testing; 18- month CIN3+ risk <5% for LG cytology
39,51,56,59,68 (66)	Very little risk if precancer is not immediately found	<5%	Repeat testing unless associated with HG cytology

The D⁵ffodil Centre

0

% of HPV+ referred

■ 16/18 & LBC (ASC-H+)

- HPV mRNA vs DNA
- Prevalent vis incident HPV detection/ screening round

Triage

LBC

The D²ffodil Centre

- Extended genotyping
- p16/ki67 dual-stained cytology

16/18 & LBC (ASC-US+)

Adapted from: IARC Handbook of Cancer Prevention 18 Cervical Cancer Screening (2022) and Smith *et al*, BMJ 2022 (results for 16/18 & LBC (ASC-H+).

Sensitivity

Performance measures for different <u>one-time</u> triage approaches (CIN3+)

Council

PPV

Dual Stain

Specificity

■ASC-US+

- HPV mRNA vs DNA
- Prevalent vis incident HPV detection/ screening round

Triage

- LBC
- Extended genotyping
- p16/ki67 dual-stained cytology
- Methylation

The D⁵ffodil Centre

Things we know – and the horizon

- Cervical screening works and drives
 elimination timing
 - How do we make it more accessible?
- HPV testing is risk-based screening
 - How can we make it better?
- HPV vaccination is maturing
 - What will future generations need?

Cohorts vaccinated at 12-13y are entering screening

Oldest vaccinees in NZ in 2022 aged ~32y

Females turning 25

Simms *et al*, Int J Cancer 2016. Will cervical screening remain cost-effective in women offered the next generation nonavalent HPV vaccine? Results for four developed countries.

Vaccination changes screening trade-offs

Cancer type	Screening strategy	Population .	Estimated outcomes per annum ^a			NNT per cancer	CER	screening, this is the number of
			# of cancer deaths prevented ^b	# of diagnostic assessments ^b	Cost ^{b,c}	death prevented ^b	(\$ per life-year saved) b.c.d	COLPOSCOPIES per death prevented
Cervical Cancer	Renewed NCSP	Not vaccinated	1,279	121,575 colp.	\$214 million	95	\$16,632	-
	Renewed NCSP	HPV4 vaccinated	302	46,630 colp.	\$156 million	154	\$66,893	
	Renewed NCSP	HPV 9 vaccinated	153	22,175 colp.	\$126 million	145	\$102,897	
Bowel cancer	NBCSP	Average-risk	2,519	114,015 col.	\$1,410 million	42	\$3,380	
Breast Cancer	BreastScreen Australia	Average-risk	580	41,763 assessments	\$316 million	62	\$23,713 - \$38,302	
Lung Cancer	Three rounds of annual LDCT Screening for high-risk smokers aged 55-74 years	High-risk smokers	N/A	N/A	N/A	N/A	\$154,776	

CER - cost-effectiveness ratio; col. – colonoscopy; colp. - colposcopy; HPV4- quadrivalent HPV; HPV9-nanvalent HPV; LDCT = low-dose computed tomography; NBCSP- National Bowel Cancer Screening program NCSP- National Cervical Screening Program; NNT- number-needed-to-treat.

^a Assuming the projected 2020 Australian population

^bCompared with no screening

^c In 2018 AUD

^d In 2009 AUD. After inflation to 2018 AUD, the cost-effectiveness ratios are \$40 279/LYS (>40 years) and \$65 065 (>20 years)

Lew *et al*, Pub Health Res Prac 2019. Benefits, harms and cost-effectiveness of cancer screening in Australia: an overview of modelling estimates.

NNT: for cervical

Vaccination changes screening trade-offs

								screening, this is the
Cancer type	Screening strategy	Population -	Estimated outcomes per annum *			NNT per cancer	CER	number of
			# of cancer deaths prevented ^b	# of diagnostic assessments ^b	Cost b,c	death prevented ^b	(\$ per life-year saved) b.c.d	COLPOSCOPIES pe death prevented
Cervical Cancer	Renewed NCSP	Not vaccinated	1,279	121,575 colp.	\$214 million	95	\$16,632	
	Renewed NCSP	HPV4 vaccinated	302	46,630 colp.	\$156 million	154	\$66,893	-
	Renewed NCSP	HPV 9 vaccinated	153	22,175 colp.	\$126 million	145	\$102,897	_
Bowel cancer	NBCSP	Average-risk	2,519	114,015 col.	\$1,410 million	42	\$3,380	
Breast Cancer	BreastScreen Australia	Average-risk	580	41,763 assessments	\$316 million	62	\$23,713 - \$38,302	
Lung Cancer	Three rounds of annual LDCT Screening for high-risk smokers aged 55-74 years	High-risk smokers	N/A	N/A	N/A	N/A	\$154,776	

CER - cost-effectiveness ratio; col. – colonoscopy; colp. - colposcopy; HPV4- quadrivalent HPV; HPV9-nanvalent HPV; LDCT = low-dose computed tomography; NBCSP- National Bowel Cancer Screening program NCSP- National Cervical Screening Program; NNT- number-needed-to-treat.

^a Assuming the projected 2020 Australian population

^bCompared with no screening

^c In 2018 AUD

^d In 2009 AUD. After inflation to 2018 AUD, the cost-effectiveness ratios are \$40 279/LYS (>40 years) and \$65 065 (>20 years)

Lew *et al*, Pub Health Res Prac 2019. Benefits, harms and cost-effectiveness of cancer screening in Australia: an overview of modelling estimates.

NNT: for cervical

Cohorts vaccinated at 12-13y are entering screening

Oldest vaccinees in NZ in 2022 aged ~32y

The D⁺ffodil Centre

Simms *et al*, Int J Cancer 2016. Will cervical screening remain cost-effective in women offered the next generation nonavalent HPV vaccine? Results for four developed countries.

Thank you

The D⁵ffodil Centre

